ZUSCHRIFTEN

Losung des CBS-Katalysators 7 (0.7 g, 2.5 mmol) in THF (80 mL) gegeben.
Man lie noch 30 min rithren und versetzte die Reaktionsmischung dann
mit geséttigter Ammoniumchloridlésung (70 mL). Die organische Phase
wurde abgetrennt, iiber Magnesiumsulfat getrocknet und im Vakuum
eingeengt. Das Rohprodukt wurde durch Sdulenchromatographie (Kiesel-
gel; Pentan/Diethylether 1/1) gereinigt. Man erhielt den Ferrocenylalkohol
8d (4.0g, 89%, 99.5% ee) als orangefarbenen Feststoff (Schmp. 117°C).
8d (4.0 g, 11.6 mmol) wurde in wasserfreiem Pyridin (30 mL) gelost und
mit Essigsdureanhydrid (20 mL) versetzt. Nach 18 h bei Raumtemperatur
wurden alle fliichtigen Bestandteile bei 50°C im Olpumpenvakuum
entfernt. Der zidhe Riickstand (4.5 g, 100 %), der langsam zu einem roten
Feststoff kristallisierte, bestand aus dem reinen Acetat 9 (Schmp. 127°C).
Dieses Acetat (3.0 g, 8 mmol) wurde in Acetonitril (200 mL) geldst und mit
37proz. Ammoniaklosung (40 mL) versetzt. Die Mischung wurde 24 h bei
Raumtemperatur gerithrt und dann in 10proz. Salzsdure (200 mL) ge-
gossen. Der entstandene Niederschlag wurde abfiltriert und mit Diethyl-
ether (4 x 20 mL) nachgewaschen. Der Riickstand wurde in 20proz. NaOH
(200 mL) gelost und das freie Amin mit Diethylether extrahiert (3 x
50 mL). Die organische Phase wurde getrocknet (MgSO,) und im Vakuum
eingeengt. Man erhielt reines 1d (1.8 g, 66 %) als orangegelben Feststoff
(Schmp. 97°C).

Enantioselektive Allylierung von 2b zu 4b (Tabelle 1, Nr. 2): Der Ligand
1d (70 mg, 0.2 mmol) und CuBr-Me,S (3 mg, 0.02 mmol) wurden in THF
(5 mL) gelost und auf —90°C gekiihlt. AnschlieBend gab man nacheinan-
der 3a (0.3 mL, 2.4 mmol) und 2b (440 mg, 2.0 mmol) zu. Man lie 18 h bei
dieser Temperatur rithren und arbeitete dann mit gesittigter Ammo-
niumchloridlésung auf. Das Losungsmittel wurde entfernt und das
erhaltene Rohprodukt durch Sdulenchromatographie (Diethylether/Pen-
tan 1/50) gereinigt. Ausbeute: 370 mg (72 %, Sy2’/Sx2=97:3) farblose
Fliissigkeit. Der Enantiomereniiberschuf3 des chiralen Produktes wurde
durch GC (CP-Chirasil-Dex CB) zu 87 % ee bestimmt.
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Selbstorganisation von 1,1'-Biphenyl-2,2’,6,6’-
tetracarbonsiaure unter Bildung eines achiralen
Netzes mit chiralen Einheiten**

Petr Holy, Jifi Zavada,* Ivana Cisarova und
Jaroslav Podlaha

Supramolekulare Selbstorganisation ist die spontane Asso-
ziation molekularer Untereinheiten (Tektone) zu strukturell
wohldefinierten, tiber nichtkovalente Bindungen (Synthone)
verkniipften Aggregaten.!:2l Die vielseitigsten Synthone fiir
die Selbstorganisation organischer Tektone sind intermole-
kulare Wasserstoffbriickenbindungen. Nach diesem Konzept
untersuchte man bisher vierfach funktionalisierte Molekiile
mit tetraedrisch angeordneten Substituenten und konnte
dabei deren faszinierende Fiahigkeit zur Bildung diamantar-
tiger Netze zeigen.’! Methantetraessigsiure 1 ist hierfiir ein
sehr typisches Beispiel.¥l Wir interessieren uns fiir die iiber
eine spontane Bildung von H-Briicken ablaufenden Selbst-
organisation von 2,2’,6,6'-tetrasubstituierten Biarylen,> ¢ die
mit den vierfach substituierten Methanen topologisch ver-
wandt sind. Denn wenn man z. B. das Konformer des Tektons
1 mit D,-Symmetrie entlang der Hauptachse streckt, entsteht
allmihlich (nach einer weiteren Anderung) das Geriist der
1,1"-Biphenyl-2,2',6,6'-tetracarbonsdure 2 (Schema 1).

HOOC
COOCH

HOOC
COOH

1 2

Schema 1. Stereochemische Beziehungen zwischen den beiden Tektonen 1
und 2.

Modellbetrachtungen mit einem H-Briicken-Paar als Syn-
thon legen nahe, daf3 die Selbstorganisation der beiden topo-
logisch verwandten Tektone 1 und 2 zu vollig unterschiedli-
chen Produkten fiithren sollte. Wahrend das tetraedrische
Tekton 1 von sich aus zur Bildung sesselformiger, verzerrter
cyclischer Hexamere neigt, aus denen ein dreidimensionales,
diamantartiges Netz entsteht, 4l sollte das Biaryl 2 bevorzugt
cyclische Tetramere bilden, was schlieBlich zu einem ein-
schichtigen, ,,quadratischen* Netz fiihren sollte (Abbildung 1).

In Ubereinstimmung mit dieser A-priori-Analyse ergab die
Kristallstrukturbestimmung!”! der Tetrasiure 2, daB die aro-
matischen Ringe der einzelnen Tektone nahezu senkrecht
zueinander ausgerichtet!'”) sind (Abbildung2) und ihre
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Abbildung 1. Schematische Darstellung des diamantartigen und des
quadratischen Netzes.

Abbildung 2. ORTEP-Darstellung der Molekiilstruktur von 2 mit der
kristallographischen Numerierung.

Selbstorganisation iiber H-Briicken-Paare verlduft.'!l Alle
vier Carboxygruppen sind an der Bildung der intermoleku-
laren H-Briicken beteiligt, was zu einem quasi-planaren Netz
aus H-verbriickten cyclischen Tetrameren fiihrt (Abbil-
dung 3). Wihrend das einzelne Tekton 2 D,;-symmetrisch
und dementsprechend achiral ist, weisen die durch Selbst-
organisation gebildeten cyclischen Tetramere (in einer idea-
len Anordnung) eine einzigartige!'> ' D ,-Symmetrie auf und
sind deshalb chiral. Cyclische Tetramere gleicher Chiralitét
sind diagonal angeordnet, entlang den horizontalen und
vertikalen Reihen des Netzes wechselt hingegen der Chirali-
tatssinn (Abbildung 4). Obwohl die tetramere Einheit selbst
chiral ist, ist das unendliche einschichtige Geriist als Folge der
Kristallsymmetrie achiral. Die benachbarten Schichten sind
zueinander versetzt gestapelt (und nicht miteinander verket-
tet)!"l (Abbildung 3).

Die Selbstorganisation des Biaryls 2 als Tekton fiihrt also zu
einer neuartigen supramolekularen Architektur, die prinzi-
piell noch auf drei entscheidende Arten optimiert werden
kann. Als erstes kann man die tatsdchliche Grofle der
einzelnen Einheiten z.B. durch vinyloge oder phenyloge
Modifikationen!'> 1! erheblich veridndern. Als nichstes kann
man die Chiralitdt der einzelnen makrocyclischen Einheiten
auf das gesamte Netz[”l ausdehnen, indem man chirale
Biaryle als Tektone verwendet. Drittens kann man die Art
der Stapelung der einzelnen Schichten durch Einfiihrung
geeigneter Substituenten in die 4,4'-Positionen des Biaryltek-
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Abbildung 3. Selbstorganisation von 2 zu einschichtigen H-verbriickten
Netzen und Stapelung benachbarter Schichten im Kristall (die Molekiile
einer zweiten Schicht sind lediglich durch Striche wiedergegeben).

tons steuern.'8 %1 Gelingt es, auf diesem Weg die Struktur
erfolgreich zu optimieren, kann dies ein neuartiger Zugang
zur Herstellung chiraler, pordser Feststoffe sein.]

Experimentelles

2: Zu einer gerithrten Suspension von 1,1’-Biphenyl-2,2',6,6'-tetracarbox-
aldehyd?! (5.32 g, 20 mmol) in wéBriger 0.3m KOH-Losung (100 mL)
wurde bei 80°C langsam (0.5 h) Kaliumpermanganat (8.69 g, 55 mmol)
gegeben. Nach weiterem Erwirmen (1h) wurde der UberschuB an
Oxidationsmittel durch Zugabe mehrerer Tropfen einer 37proz. wiBrigen
Formaldehydlosung zerstort. Das ausgefallene Mangandioxid wurde ab-
filtriert und mit heiBem Wasser gewaschen (100 mL). Die vereinigten
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Abbildung 4. Schematische Darstellung der Anordnung der cyclischen
Tetramere mit entgegengesetzter Chiralitédt (karierte und leere Quadrate)
in einer H-verbriickten Schicht im Kristall von 2.
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wiBrigen Filtrate wurden auf 100 mL eingeengt, mit konz. Salzsdure auf
pH 1 eingestellt und im Kiihlschrank abgekiihlt. Der dabei gebildete Nieder-
schlag der Tetrasdure 2 wurde abfiltriert, mit Wasser gewaschen und ge-
trocknet. Ausbeute 5.41 g (82 %), Schmp. >370°C (> 350°C,?2 > 300 °CI?2").
Einkristalle wurden durch langsames Abkiihlen einer heilen wiBrigen
Losung geziichtet.
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Hocheffiziente Synthese von Rotaxanen mit
einem anionischen Templat**
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Verbindungen wie Rotaxane und Catenane bestehen aus
nichtkovalent verkniipften Molekiilen, die derzeit breites
Interesse finden. Ihre Synthese bedarf meist einer Templat-
assistenz, also der Prdorganisation von Molekiilbausteinen,
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