
ZUSCHRIFTEN

Angew. Chem. 1999, 111, Nr. 3 � WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1999 0044-8249/99/11103-0393 $ 17.50+.50/0 393

Selbstorganisation von 1,1'-Biphenyl-2,2',6,6'-
tetracarbonsäure unter Bildung eines achiralen
Netzes mit chiralen Einheiten**
Petr HolyÂ, JirÏí ZaÂvada,* Ivana CísarÏovaÂ und
Jaroslav Podlaha

Supramolekulare Selbstorganisation ist die spontane Asso-
ziation molekularer Untereinheiten (Tektone) zu strukturell
wohldefinierten, über nichtkovalente Bindungen (Synthone)
verknüpften Aggregaten.[1, 2] Die vielseitigsten Synthone für
die Selbstorganisation organischer Tektone sind intermole-
kulare Wasserstoffbrückenbindungen. Nach diesem Konzept
untersuchte man bisher vierfach funktionalisierte Moleküle
mit tetraedrisch angeordneten Substituenten und konnte
dabei deren faszinierende Fähigkeit zur Bildung diamantar-
tiger Netze zeigen.[3] Methantetraessigsäure 1 ist hierfür ein
sehr typisches Beispiel.[4] Wir interessieren uns für die über
eine spontane Bildung von H-Brücken ablaufenden Selbst-
organisation von 2,2',6,6'-tetrasubstituierten Biarylen,[5, 6] die
mit den vierfach substituierten Methanen topologisch ver-
wandt sind. Denn wenn man z.B. das Konformer des Tektons
1 mit D2d-Symmetrie entlang der Hauptachse streckt, entsteht
allmählich (nach einer weiteren ¾nderung) das Gerüst der
1,1'-Biphenyl-2,2',6,6'-tetracarbonsäure 2 (Schema 1).

Schema 1. Stereochemische Beziehungen zwischen den beiden Tektonen 1
und 2.

Modellbetrachtungen mit einem H-Brücken-Paar als Syn-
thon legen nahe, daû die Selbstorganisation der beiden topo-
logisch verwandten Tektone 1 und 2 zu völlig unterschiedli-
chen Produkten führen sollte. Während das tetraedrische
Tekton 1 von sich aus zur Bildung sesselförmiger, verzerrter
cyclischer Hexamere neigt, aus denen ein dreidimensionales,
diamantartiges Netz entsteht,[3, 4] sollte das Biaryl 2 bevorzugt
cyclische Tetramere bilden, was schlieûlich zu einem ein-
schichtigen, ¹quadratischenª Netz führen sollte (Abbildung 1).

In Übereinstimmung mit dieser A-priori-Analyse ergab die
Kristallstrukturbestimmung[7] der Tetrasäure 2, daû die aro-
matischen Ringe der einzelnen Tektone nahezu senkrecht
zueinander ausgerichtet[10] sind (Abbildung 2) und ihre

Lösung des CBS-Katalysators 7 (0.7 g, 2.5 mmol) in THF (80 mL) gegeben.
Man lieû noch 30 min rühren und versetzte die Reaktionsmischung dann
mit gesättigter Ammoniumchloridlösung (70 mL). Die organische Phase
wurde abgetrennt, über Magnesiumsulfat getrocknet und im Vakuum
eingeengt. Das Rohprodukt wurde durch Säulenchromatographie (Kiesel-
gel; Pentan/Diethylether 1/1) gereinigt. Man erhielt den Ferrocenylalkohol
8d (4.0 g, 89%, 99.5 % ee) als orangefarbenen Feststoff (Schmp. 117 8C).
8d (4.0 g, 11.6 mmol) wurde in wasserfreiem Pyridin (30 mL) gelöst und
mit Essigsäureanhydrid (20 mL) versetzt. Nach 18 h bei Raumtemperatur
wurden alle flüchtigen Bestandteile bei 50 8C im Ölpumpenvakuum
entfernt. Der zähe Rückstand (4.5 g, 100 %), der langsam zu einem roten
Feststoff kristallisierte, bestand aus dem reinen Acetat 9 (Schmp. 127 8C).
Dieses Acetat (3.0 g, 8 mmol) wurde in Acetonitril (200 mL) gelöst und mit
37proz. Ammoniaklösung (40 mL) versetzt. Die Mischung wurde 24 h bei
Raumtemperatur gerührt und dann in 10proz. Salzsäure (200 mL) ge-
gossen. Der entstandene Niederschlag wurde abfiltriert und mit Diethyl-
ether (4� 20 mL) nachgewaschen. Der Rückstand wurde in 20proz. NaOH
(200 mL) gelöst und das freie Amin mit Diethylether extrahiert (3�
50 mL). Die organische Phase wurde getrocknet (MgSO4) und im Vakuum
eingeengt. Man erhielt reines 1d (1.8 g, 66 %) als orangegelben Feststoff
(Schmp. 97 8C).

Enantioselektive Allylierung von 2b zu 4b (Tabelle 1, Nr. 2): Der Ligand
1d (70 mg, 0.2 mmol) und CuBr ´ Me2S (3 mg, 0.02 mmol) wurden in THF
(5 mL) gelöst und auf ÿ90 8C gekühlt. Anschlieûend gab man nacheinan-
der 3 a (0.3 mL, 2.4 mmol) und 2 b (440 mg, 2.0 mmol) zu. Man lieû 18 h bei
dieser Temperatur rühren und arbeitete dann mit gesättigter Ammo-
niumchloridlösung auf. Das Lösungsmittel wurde entfernt und das
erhaltene Rohprodukt durch Säulenchromatographie (Diethylether/Pen-
tan 1/50) gereinigt. Ausbeute: 370 mg (72 %, SN2�/SN2� 97:3) farblose
Flüssigkeit. Der Enantiomerenüberschuû des chiralen Produktes wurde
durch GC (CP-Chirasil-Dex CB) zu 87 % ee bestimmt.
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Abbildung 1. Schematische Darstellung des diamantartigen und des
quadratischen Netzes.

Abbildung 2. ORTEP-Darstellung der Molekülstruktur von 2 mit der
kristallographischen Numerierung.

Selbstorganisation über H-Brücken-Paare verläuft.[11] Alle
vier Carboxygruppen sind an der Bildung der intermoleku-
laren H-Brücken beteiligt, was zu einem quasi-planaren Netz
aus H-verbrückten cyclischen Tetrameren führt (Abbil-
dung 3). Während das einzelne Tekton 2 D2d-symmetrisch
und dementsprechend achiral ist, weisen die durch Selbst-
organisation gebildeten cyclischen Tetramere (in einer idea-
len Anordnung) eine einzigartige[12, 13] D4-Symmetrie auf und
sind deshalb chiral. Cyclische Tetramere gleicher Chiralität
sind diagonal angeordnet, entlang den horizontalen und
vertikalen Reihen des Netzes wechselt hingegen der Chirali-
tätssinn (Abbildung 4). Obwohl die tetramere Einheit selbst
chiral ist, ist das unendliche einschichtige Gerüst als Folge der
Kristallsymmetrie achiral. Die benachbarten Schichten sind
zueinander versetzt gestapelt (und nicht miteinander verket-
tet)[14] (Abbildung 3).

Die Selbstorganisation des Biaryls 2 als Tekton führt also zu
einer neuartigen supramolekularen Architektur, die prinzi-
piell noch auf drei entscheidende Arten optimiert werden
kann. Als erstes kann man die tatsächliche Gröûe der
einzelnen Einheiten z. B. durch vinyloge oder phenyloge
Modifikationen[15, 16] erheblich verändern. Als nächstes kann
man die Chiralität der einzelnen makrocyclischen Einheiten
auf das gesamte Netz[17] ausdehnen, indem man chirale
Biaryle als Tektone verwendet. Drittens kann man die Art
der Stapelung der einzelnen Schichten durch Einführung
geeigneter Substituenten in die 4,4'-Positionen des Biaryltek-

Abbildung 3. Selbstorganisation von 2 zu einschichtigen H-verbrückten
Netzen und Stapelung benachbarter Schichten im Kristall (die Moleküle
einer zweiten Schicht sind lediglich durch Striche wiedergegeben).

tons steuern.[18, 19] Gelingt es, auf diesem Weg die Struktur
erfolgreich zu optimieren, kann dies ein neuartiger Zugang
zur Herstellung chiraler, poröser Feststoffe sein.[20]

Experimentelles

2 : Zu einer gerührten Suspension von 1,1'-Biphenyl-2,2',6,6'-tetracarbox-
aldehyd[21] (5.32 g, 20 mmol) in wäûriger 0.3m KOH-Lösung (100 mL)
wurde bei 80 8C langsam (0.5 h) Kaliumpermanganat (8.69 g, 55 mmol)
gegeben. Nach weiterem Erwärmen (1 h) wurde der Überschuû an
Oxidationsmittel durch Zugabe mehrerer Tropfen einer 37proz. wäûrigen
Formaldehydlösung zerstört. Das ausgefallene Mangandioxid wurde ab-
filtriert und mit heiûem Wasser gewaschen (100 mL). Die vereinigten

Abbildung 4. Schematische Darstellung der Anordnung der cyclischen
Tetramere mit entgegengesetzter Chiralität (karierte und leere Quadrate)
in einer H-verbrückten Schicht im Kristall von 2.
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Hocheffiziente Synthese von Rotaxanen mit
einem anionischen Templat**
Gosia M. Hübner, Jens Gläser, Christian Seel und
Fritz Vögtle*

Verbindungen wie Rotaxane und Catenane bestehen aus
nichtkovalent verknüpften Molekülen, die derzeit breites
Interesse finden. Ihre Synthese bedarf meist einer Templat-
assistenz, also der Präorganisation von Molekülbausteinen,

wäûrigen Filtrate wurden auf 100 mL eingeengt, mit konz. Salzsäure auf
pH 1 eingestellt und im Kühlschrank abgekühlt. Der dabei gebildete Nieder-
schlag der Tetrasäure 2 wurde abfiltriert, mit Wasser gewaschen und ge-
trocknet. Ausbeute 5.41 g (82%), Schmp.>3708C (>3508C,[22a] >3008C[22b]).
Einkristalle wurden durch langsames Abkühlen einer heiûen wäûrigen
Lösung gezüchtet.
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